SYSTEMATIC BOTANY

STUDY OF THE CLASSIFICATION OF PLANTS

Learning Target:

- Living things can be classified based on structural, embryological, and molecular evidence.
 - Be able to describe the levels of classification.
 - Be able to name organisms using binomial nomenclature.
 - List and give examples for each kingdom based on a 6 kingdom classification system.

I <u>Taxonomy</u> – science of classification

7 groups scientists use to classify things:

- + Kingdom (animalia)
- + Phylum/Division (chordata)
- + Class (mammalia)
- + Order (primate)
- + Family (hominidae)
- + Genus (<u>Homo</u>)

+ Species – (<u>sapien</u>) – group of similar organisms that can mate and produce *FERTILE* offspring.

When writing the scientific name of an organism, we use the genus and species names.

Ex: Homo sapien

Felis concolor

(human)

(cougar)

Acer species

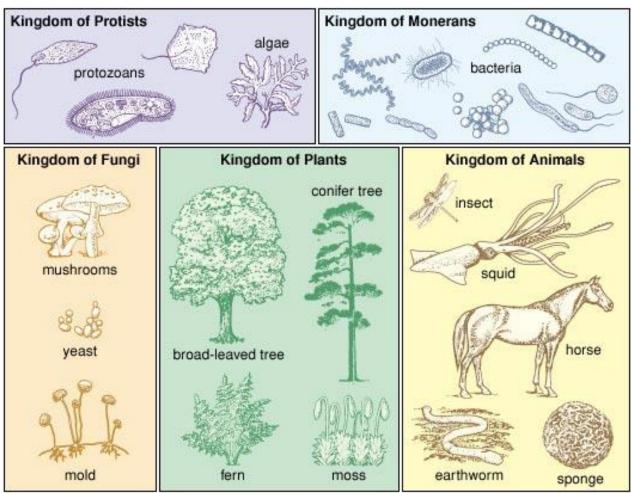
(all maples)

Genus name is capitalized

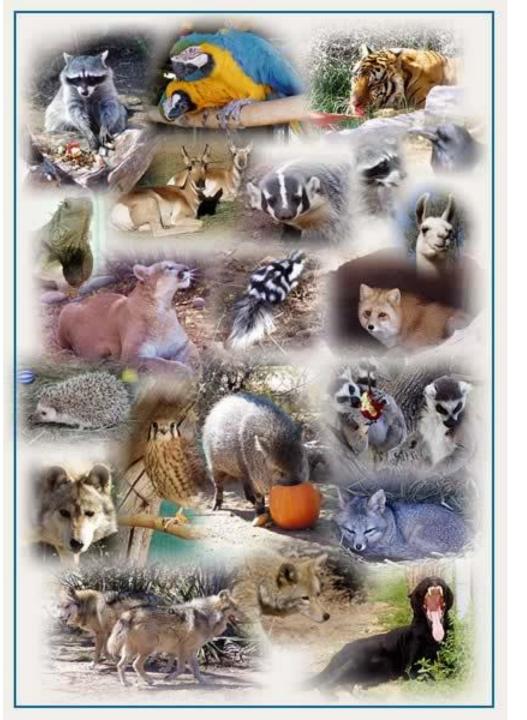
species name is lower-case.

Both names are italicized.

Underline if you can't use italics!


Taxonomists use these groupings to help understand the relationships between living things.

In order to place organisms in a group, scientists use:


- a) Structural similar
- b) Genetics
- c) Evolution
- d) Embryology

II. KINGDOMS

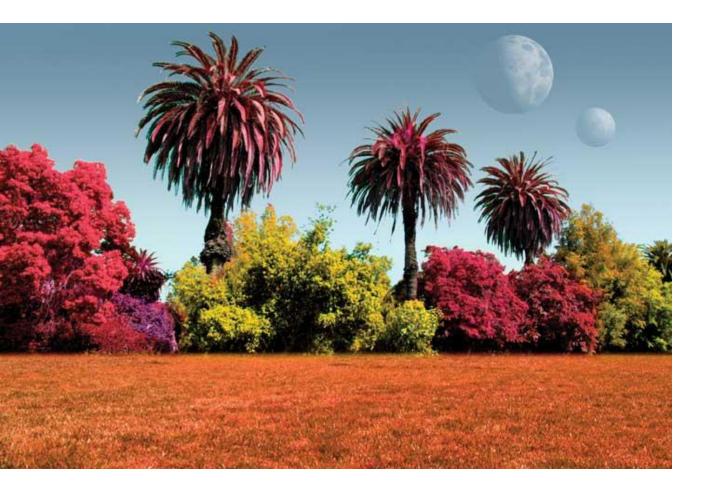
- Animalia
- Plantae
- Fungi
- Monera
 - Eubacteria
 - Archaebacteria
- Protista

^{© 2006} Encyclopædia Britannica, Inc.

Animalia

- Multicellular
- Eukaryotic
- Heterotrophic
- Most motile
- Exhibit embryonic development

Animalia


- Examples: – Lizzard
 - Dog
 - Tiger
 - Lion
 - Human

Plantae

- Multicellular
- Eukaryotic
- Autotrophic (photosynthetic)
- Have cells with cell walls

Plantae

- Examples: – Pines
 - Maples
 - Flowers
 - Oaks
 - Ferns

Fungi

- Multicellular
- Eukaryotic
- Made of thin threads called hyphae.
- Heterotrophic
- Cell walls made of chitin.
- Reproduce by spores.

Fungi

- Examples:
 - Yeast,
 - Mold,
 - Mushrooms,
 - Bracket fungi
 - Puffball

Lactarius

Exude droplets

coloured liquid

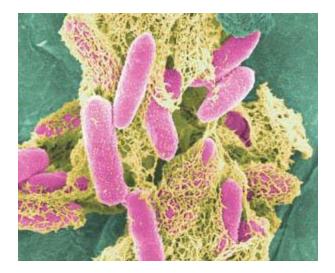
when damaged

Hygrocybe

Waxy to the touch, often

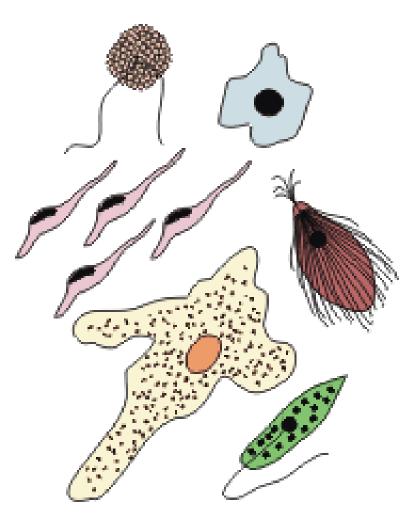
brightly coloured, growing in prass

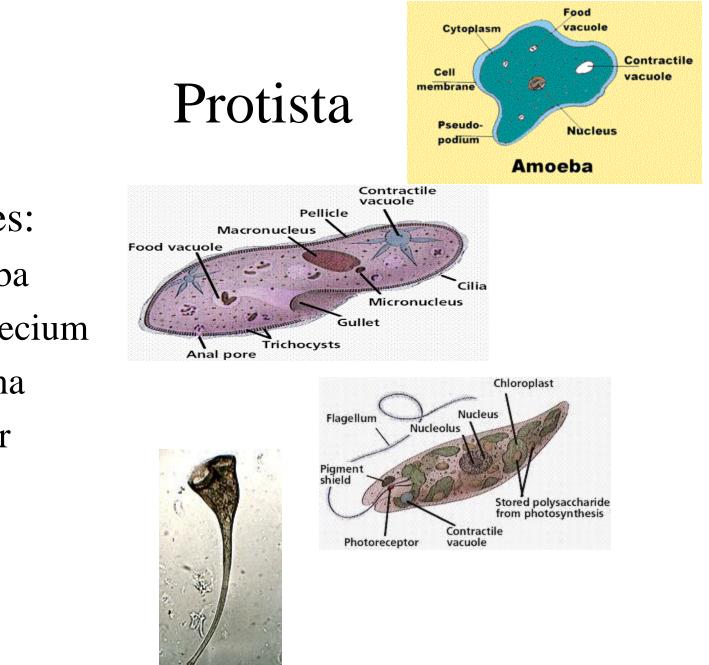
of milky-white or


Monera

- Archaebacteria (ancient Bacteria)
 - Prokaryotes (no nucleus)
 - Unicellular
 - Strange bacteria that inhabit strange environments (high salt or high temp)
 - Ex:
 - Thermophiles
 - hemophiles

- Eubacteria
 - (True Bacteria)
 - Prokaryotes (no nucleus)
 - Unicellular
 - No organelles
 - Examples:
 - Streptococcus
 - E. Coli
 - Cyanobacteria


Monera



Protista

- Microscopic, unicellular
- Eukaryotic
- May be heterotrophic or autotrophic
- Most reproduce by fission
- Grouped into 3 categories:
 - Animal-like
 - Plant-like
 - Fungus-like

- **Examples:**
 - a. Amoeba
 - b. Paramecium
 - c. Euglena
 - d. Stentor

Learning Target

- Living things can be classified based on structural, embryological, and molecular evidence.
 - Describe the distinguishing characteristics of each group of plants.
 - Be able to classify plants into their correct groups.

Plant Classification

• <u>Objectives:</u>

- - Describe the basic Divisions of the plant kingdom.
- <u>- Identify mosses and their relatives as seedless</u> <u>nonvascular plants.</u>
- <u>- Identify club mosses and ferns as seedless vascular</u> <u>plants.</u>
- <u>- Describe the characteristics of seed plants, including</u> <u>cone-bearing plants and flowering plants.</u>

III. PLANT CLASSIFICATION

The plant kingdom includes the flowering plants, conifers, ferns, mosses, and certain kinds of algae.

A) Water plants (Algae) – simple, water-dwelling plants.

1) <u>Green algae</u> – thought to be closely related to land plants.

2) <u>Red algae</u> – generally large, multicellular ocean plants.

3) <u>Brown algae</u> – generally large, multicellular ocean plants.

B) Land plants

1) <u>Non-vascular plants</u> – Lack an internal means for water transportation. Grow mainly in moist, shady places.

- Main group is **<u>Bryophyta</u>**: (have no roots or stems)
 - -Mosses
 - -Liverworts

moss

Close-up of moss with spore-producing structure. http://www.search.com/reference/Moss

Liverworts

Small picture from: http://www.erin.utoronto.ca/~w3env100y/ env/ENV100/sci/biodiversity_03.htm

- 2) <u>Vascular plants</u> have vascular (conducting) tissues which transport water, minerals, and photosynthetic materials throughout the plants roots, stems and leaves.
 - Two main groups: nonseed and seed plants.
 - a) Non-seed plants reproduce with spores
 - i. Ferns
 - ii. Horsetails
 - iii. Ground pines
 - iv. Club mosses

Fern

Horsetails

Ground pines

Club mosses

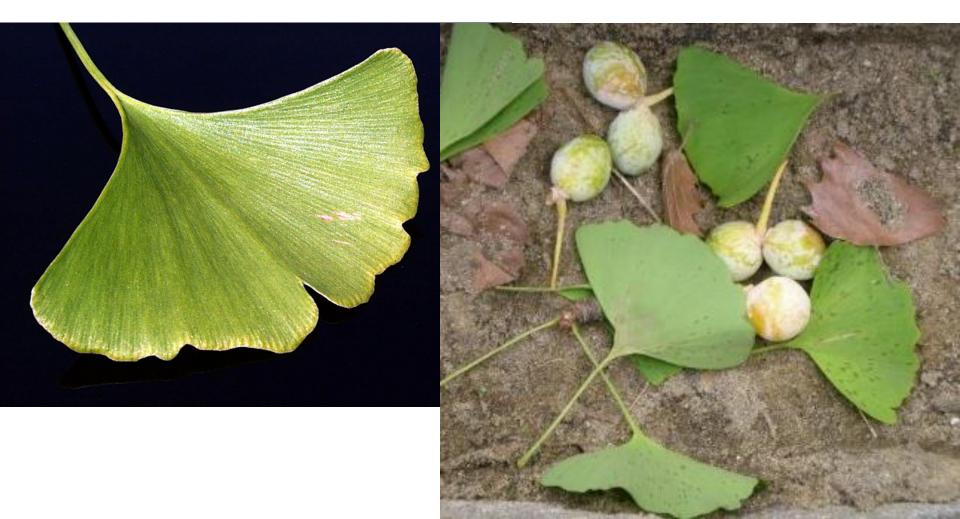
b) Seed Plants

- Gymnosperms "naked",
 unprotected seeds (lacking an enclosing fruit)
- ii. Angiosperms enclosed protected seeds. Flowering plants, seeds develop within a fruit.

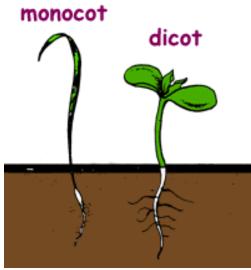
The Gymnosperms...

a) Conifersb) Cycadsc) Ginko

<u>Conifers (evergreens)</u>: have needles, seed and pollen cones. Ex: pine, spruce, cedar, hemlock, juniper, yew, sequoia.



<u>**Cycads</u>** – many extinct, grow in tropical areas, resemble palm trees.</u>



<u>**Ginkgos</u>**: one remaining species the maidenhair tree. Leaves fan-shaped with a large fleshly seed "fruit". *The seed coat is fleshy and LOOKS like a fruit, but it is not actually a protective ovary wall, so it isn't technically a fruit.*</u>

The Angiosperms...

- a) Monocotyledons (monocots)
 have one cotyledon, or seed
 leaf, in the seed. Examples:
 grasses, orchids, lilies, palms
- b) Dicotyledons (dicots) have two cotyledons, or seed leaves, in the seed. Examples: shrubs, trees, wildflowers, and herbs

Other ways to tell monocots from dicots ...

Arrangement of veins in the leaves shows whether a plant is a monocot or a dicot

- 1. Veins in the leaves of monocots are parallel to each other
- 2. Veins in the leaves of dicots are branching

Both pictures from: www.backyardnature.net

Arrangement of petals shows whether a plant is a monocot or a dicot

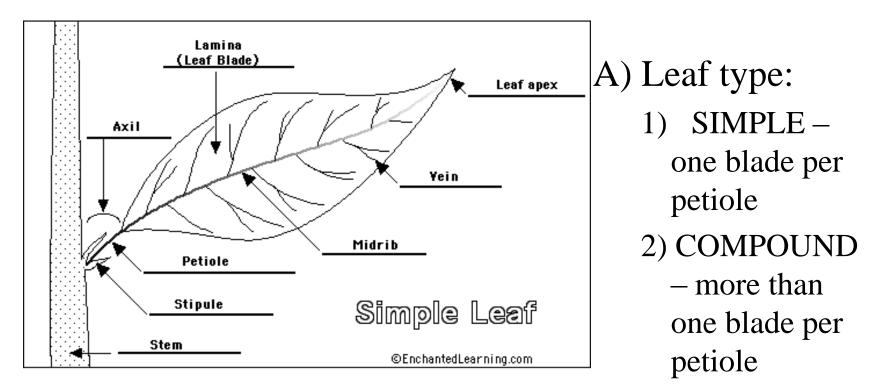
1. Monocots have flower parts in multiples of threes

2. Dicots have flower parts in multiples of fours or fives

http://www.bridgewater.edu/~lhill/Monocotordicot.htm

Monocots

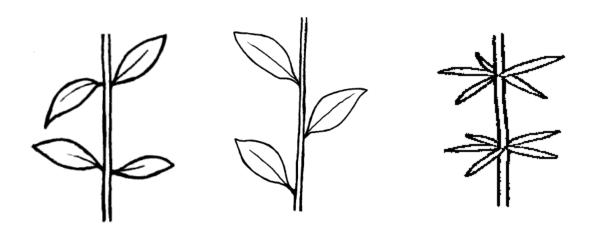
Dicots


Learning Target

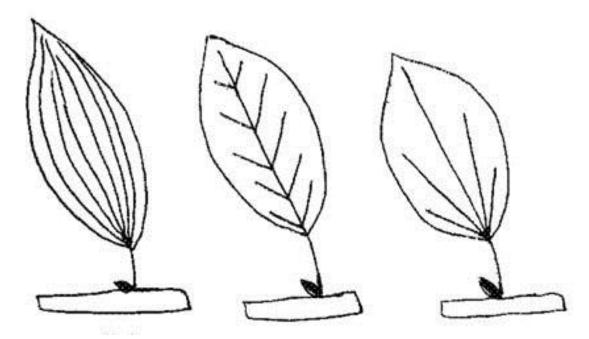
• Describe different anatomical patterns that are used to classify plants.

Success Criteria:

• Students will be able to identify plants with each of the anatomic patterns used in classification.


IV. Plant anatomy:

Different types of compound leaves... (left to right) فليغذ فالمشيدية a. Pinnate (compound leaflet) b. Bipinnate primary leaflet (pinnule or pinnula) c. Palmate secondary leaflet rachis petiole C E.M. Armstrong 2002 bipinnate leaf



B) LEAF ARRANGEMENTS: How the leaves are attached to the stem.

(left to right)1) Opposite2) Alternate3) Whorled

C) LEAF VEINATIONS: How the veins are arranged on a leaf.

(left to right)1) Parallel2) Pinnate3) Palmate

D) Leaf margins (the edge of the leaf)

(from top to bottom)

- 1. Entire (smooth no teeth or indentations).
- 2. Serrated (teeth)
- 3. Lobed (indentations in the sides of the leaf)

(these aren't all the possible leaf margins!)