Chapter 4

Section 1 Changes in Motion

Preview

- Objectives
- Force
- Force Diagrams

Chapter 4

 Section 1 Changes in Motion
Objectives .

- Describe how force affects the motion of an object. v
- Interpret and construct free body diagrams.

Chapter 4

Force

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

 Section 1 Changes in Motion
Force ,

- A force is an action exerted on an object which may change the object's state of rest or motion. .
- Forces can cause accelerations. .
- The SI unit of force is the newton, N. v
- Forces can act through contact or at a distance.

Chapter 4

 Section 1 Changes in Motion
Comparing Contact and Field Forces

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Force Diagrams .

- The effect of a force depends on both magnitude and direction. Thus, force is a vector quantity. v
- Diagrams that show force vectors as arrows are called force diagrams. \downarrow
- Force diagrams that show only the forces acting on a single object are called free-body diagrams.

Chapter 4

Force Diagrams, continued v

Force Diagram ,

In a force diagram, vector arrows represent all the forces acting in a situation. v

Free-Body Diagram -

A free-body diagram shows only the forces acting on the object of interest-in this case, the car.

Chapter 4

Drawing a Free-Body Diagram

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Preview

- Objectives
- Newton's First Law
- Net Force
- Sample Problem
- Inertia
- Equilibrium

Chapter 4

Objectives .

- Explain the relationship between the motion of an object and the net external force acting on the object. .
- Determine the net external force on an object. v
- Calculate the force required to bring an object into equilibrium.

Chapter 4

Newton's First Law

- An object at rest remains at rest, and an object in motion continues in motion with constant velocity (that is, constant speed in a straight line) unless the object experiences a net external force. .
- In other words, when the net external force on an object is zero, the object's acceleration (or the change in the object's velocity) is zero.

Chapter 4

Section 2 Newton's First Law

Net Force ,

- Newton's first law refers to the net force on an object. The net force is the vector sum of all forces acting on an object. .
- The net force on an object can be found by using the methods for finding resultant vectors. .

Although several forces are acting on this car, the vector sum of the forces is zero. Thus, the net force is zero, and the car moves at a constant velocity.

Chapter 4

Sample Problem

Determining Net Force ,

Derek leaves his physics book on top of a drafting table that is inclined at a 35° angle. The free-body diagram below shows the forces acting on the book. Find the net force acting on the book.

Chapter 4

Sample Problem, continued

1. Define the problem, and identify the variables. v Given:

$$
\begin{aligned}
& F_{\text {gravity-on-book }}=F_{g}=22 \mathrm{~N} \\
& F_{\text {friction }}=F_{f}=11 \mathrm{~N} \\
& F_{\text {table-on-book }}=F_{t}=18 \mathrm{~N}
\end{aligned}
$$

Unknown:

$$
F_{n e t}=\text { ? }
$$

Chapter 4

Section 2 Newton's First Law

Sample Problem, continued ,

2. Select a coordinate system, and apply it to the free-body diagram. ,
Choose the x-axis parallel to and the y-axis perpendicular to the incline of the table, as shown in (a). This coordinate system is the most convenient because only one force needs to be resolved into x and y components. v

Tip: To simplify the problem, always choose the coordinate system in which as many forces as possible lie on the x - and y-axes.

Chapter 4

Sample Problem, continued ,

3. Find the x and y components of all vectors. v

Draw a sketch, as shown in (b), to help find the components of the vector \mathbf{F}_{g}. The angle θ is equal to $180^{\circ}-90^{\circ}-35^{\circ}=55^{\circ}$.

$$
\begin{array}{ll}
\cos \theta=\frac{F_{g, x}}{F_{g}} & \sin \theta=\frac{F_{g, v}}{F_{g}} \\
F_{g, x}=F_{g} \cos \theta & F_{g, y}=F_{g} \sin \theta \\
F_{g, x}=(22 \mathrm{~N})\left(\cos 55^{\circ}\right) & F_{g, x}=(22 \mathrm{~N})\left(\sin 55^{\circ}\right) \\
F_{g, x}=13 \mathrm{~N} & F_{g, x}=18 \mathrm{~N}
\end{array}
$$

Add both components to the free-body diagram, as shown in (c).

Chapter 4

Sample Problem, continued ,

4. Find the net force in both the x and y directions. v

Diagram (d) shows another free-body diagram of the book, now with forces acting only along the x-and y-axes.

For the x direction:
$\Sigma F_{x}=F_{g, x}-F_{f}$
$\Sigma F_{x}=13 \mathrm{~N}-11 \mathrm{~N}$
$\Sigma F_{x}=2 \mathrm{~N}$,

For the y direction:
(d)
$\Sigma F_{y}=F_{t}-F_{g, y}$
$\Sigma F_{y}=18 \mathrm{~N}-18 \mathrm{~N}$
$\Sigma F_{y}=0 \mathrm{~N}$

Chapter 4

Sample Problem, continued

5. Find the net force.

Add the net forces in the x and y directions together as vectors to find the total net force. In this case, $\mathrm{F}_{\text {net }}=2 \mathrm{~N}$ in the $+x$ direction, as shown in (e). Thus, the book accelerates down the incline.

$$
F_{n e t}=2 \mathrm{~N}
$$

(e)

Chapter 4

Inertia

- Inertia is the tendency of an object to resist being moved or, if the object is moving, to resist a change in speed or direction.
- Newton's first law is often referred to as the law of inertia because it states that in the absence of a net force, a body will preserve its state of motion. .
- Mass is a measure of inertia.

Chapter 4

Mass and Inertia

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Section 2 Newton's First Law

Equilibrium v

- Equilibrium is the state in which the net force on an object is zero. v
- Objects that are either at rest or moving with constant velocity are said to be in equilibrium. v
- Newton's first law describes objects in equilibrium. -

Tip: To determine whether a body is in equilibrium, find the net force. If the net force is zero, the body is in equilibrium. If there is a net force, a second force equal and opposite to this net force will put the body in equilibrium.

Chapter 4

Section 3 Newton's Second and Third Laws

Preview

- Objectives
- Newton's Second Law
- Newton's Third Law
- Action and Reaction Forces

Chapter 4

Objectives .

- Describe an object's acceleration in terms of its mass and the net force acting on it. \downarrow
- Predict the direction and magnitude of the acceleration caused by a known net force. .
- Identify action-reaction pairs.

Chapter 4

Newton's Second Law v

The acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the object's mass. .

$$
\Sigma \mathbf{F}=m a
$$

net force $=$ mass \times acceleration \quad v

IF represents the vector sum of all external forces acting on the object, or the net force.

Chapter 4

Section 3 Newton's Second and Third Laws

Newton's Second Law

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Newton's Third Law v

- If two objects interact, the magnitude of the force exerted on object 1 by object 2 is equal to the magnitude of the force simultaneously exerted on object 2 by object 1 , and these two forces are opposite in direction. .
- In other words, for every action, there is an equal and opposite reaction. .
- Because the forces coexist, either force can be called the action or the reaction.

Chapter 4

Action and Reaction Forces v

- Action-reaction pairs do not imply that the net force on either object is zero.
- The action-reaction forces are equal and opposite, but either object may still have a net force on it. v

Consider driving a nail into wood with a hammer. The force that the nail exerts on the hammer is equal and opposite to the force that the hammer exerts on the nail. But there is a net force acting on the nail, which drives the nail into the wood.

Chapter 4

Section 3 Newton's Second and Third Laws

Newton's Third Law

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Preview

- Objectives
- Weight
- Normal Force
- Friction
- Sample Problem

Chapter 4

Objectives .

- Explain the difference between mass and weight. v
- Find the direction and magnitude of normal forces. .
- Describe air resistance as a form of friction. v
- Use coefficients of friction to calculate frictional force.

Chapter 4

Weight v

- The gravitational force $\left(F_{g}\right)$ exerted on an object by Earth is a vector quantity, directed toward the center of Earth. v
- The magnitude of this force $\left(F_{g}\right)$ is a scalar quantity called weight. v
- Weight changes with the location of an object in the universe.

Chapter 4

Weight, continued v

- Calculating weight at any location:

$$
\begin{aligned}
& F_{g}=m a_{g} \\
& a_{g}=\text { free-fall acceleration at that location }
\end{aligned}
$$

- Calculating weight on Earth's surface:

$$
\begin{aligned}
a_{g} & =g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
F_{g} & =m g=m\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Chapter 4

Comparing Mass and Weight

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Normal Force

- The normal force acts on a surface in a direction perpendicular to the surface.
- The normal force is not always opposite in direction to the force due to gravity. v

- In the absence of other forces, the normal force is equal and opposite to the component of gravitational force that is perpendicular to the contact surface.
- In this example, $F_{n}=m g \cos \theta$.

Chapter 4

Normal Force

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Friction v

- Static friction is a force that resists the initiation of sliding motion between two surfaces that are in contact and at rest. ,
- Kinetic friction is the force that opposes the movement of two surfaces that are in contact and are sliding over each other.
- Kinetic friction is always less than the maximum static friction.

Chapter 4

Friction

Click below to watch the Visual Concept.

Visual Concept

Chapter 4

Friction Forces in Free-Body Diagrams ,

- In free-body diagrams, the force of friction is always parallel to the surface of contact. .
- The force of kinetic friction is always opposite the direction of motion.
- To determine the direction of the force of static friction, use the principle of equilibrium. For an object in equilibrium, the frictional force must point in the direction that results in a net force of zero.

Chapter 4

The Coefficient of Friction

- The quantity that expresses the dependence of frictional forces on the particular surfaces in contact is called the coefficient of friction, μ_{L} v
- Coefficient of kinetic friction: \vee

$$
\mu_{k}=\frac{F_{k}}{F_{n}}
$$

- Coefficient of static friction:

$$
\mu_{s}=\frac{F_{s, m a x}}{F_{n}}
$$

Coefficient of Friction

Coefficients of Friction

	$\mu_{\text {s }}$	$\mu_{\boldsymbol{k}}$		$\mu_{\text {s }}$	$\mu_{\mathbf{k}}$
Steel on steel	0.74	0.57	Waxed wood on wet snow	0.14	0.1
Aluminum on steel	0.61	0.47	Waxed wood on dry snow	-	0.04
Rubber on dry concrete	1.0	0.8	Metal on metal (lubricated)	0.15	0.06
Rubber on wet concrete	-	0.5	Ice on ice	0.1	0.03
Wood on wood	0.4	0.2	Teflon on Teflon	0.04	0.04
Glass on glass	0.9	0.4	Synovial joints in humans	0.01	0.003

Chapter 4

Sample Problem .

Overcoming Friction
A student attaches a rope to a 20.0 kg box of books. He pulls with a force of 90.0 N at an angle of 30.0° with the horizontal. The coefficient of kinetic friction between the box and the sidewalk is 0.500 . Find the acceleration of the box.

Chapter 4

Sample Problem, continued

 1. DefineGiven:

$$
\begin{aligned}
& m=20.0 \mathrm{~kg} \\
& \mu_{k}=0.500 \\
& F_{\text {applied }}=90.0 \mathrm{~N} \text { at } \theta=30.0^{\circ}
\end{aligned}
$$

Unknown:
$\mathbf{a}=$? v
Diagram:

Chapter 4

Sample Problem, continued

2. Plan

Choose a convenient coordinate system, and find the x and y components of all forces. v

The diagram on the right shows the most convenient coordinate system, because the only force to resolve into components is $F_{\text {applied }}$ -

$$
\begin{aligned}
& F_{\text {applied }, y}=(90.0 \mathrm{~N})\left(\sin 30.0^{\circ}\right)=45.0 \mathrm{~N} \text { (upward) } \\
& F_{\text {applied }, x}=(90.0 \mathrm{~N})\left(\cos 30.0^{\circ}\right)=77.9 \mathrm{~N} \text { (to the right) }
\end{aligned}
$$

Chapter 4

Sample Problem, continued

Choose an equation or situation: ,
A. Find the normal force, F_{n}, by applying the condition of equilibrium in the vertical direction:

$$
\Sigma F_{y}=0
$$

B. Calculate the force of kinetic friction on the box:

$$
F_{k}=\mu_{k} F_{n}
$$

C. Apply Newton's second law along the horizontal direction to find the acceleration of the box:

$$
\Sigma F_{x}=m a_{x}
$$

Chapter 4

Sample Problem, continued ,

3. Calculate ,

A. To apply the condition of equilibrium in the vertical direction, you need to account for all of the forces in the y direction:
F_{g}, F_{n}, and $F_{\text {applied,y }}$. You know $F_{\text {applied, } y}$ and can use the box's
mass to find F_{g}. \checkmark

$$
\begin{aligned}
& F_{\text {applied }, y}=45.0 \mathrm{~N} \\
& F_{g}=(20.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=196 \mathrm{~N}
\end{aligned}
$$

Next, apply the equilibrium condition,
Tip: Remember to pay attention to the direction of forces. $\Sigma F_{y}=0$, and solve for F_{n}.
$\Sigma F_{y}=F_{n}+F_{\text {applied, },}-F_{g}=0$ $F_{n}+45.0 \mathrm{~N}-196 \mathrm{~N}=0$

$$
F_{n}=-45.0 \mathrm{~N}+196 \mathrm{~N}=151 \mathrm{~N}
$$ In this step, F_{g} is subtracted from F_{n} and $F_{\text {applied. } y}$ because F_{g} is directed downward.

Chapter 4

Sample Problem, continued

B. Use the normal force to find the force of kinetic friction. \downarrow

$$
F_{k}=\mu_{k} F_{n}=(0.500)(151 \mathrm{~N})=75.5 \mathrm{~N} \nabla
$$

C. Use Newton's second law to determine the horizontal acceleration.

$$
\begin{aligned}
& \Sigma F_{x}=F_{\text {applied }}-F_{k}=m a_{x} \\
& a_{x}=\frac{F_{\text {applied }, x}-F_{k}}{m}=\frac{77.9 \mathrm{~N}-75.5 \mathrm{~N}}{20.0 \mathrm{~kg}}=\frac{2.4 \mathrm{~N}}{20.0 \mathrm{~kg}}=\frac{2.4 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}^{2}}{20.0 \mathrm{~kg}}
\end{aligned}
$$

$\mathbf{a}=0.12 \mathrm{~m} / \mathrm{s}^{2}$ to the right

Chapter 4

Sample Problem, continued

4. Evaluate ,

The box accelerates in the direction of the net force, in accordance with Newton's second law. The normal force is not equal in magnitude to the weight because the y component of the student's pull on the rope helps support the box.

Chapter 4

Air Resistance .

- Air resistance is a form of friction. Whenever an object moves through a fluid medium, such as air or water, the fluid provides a resistance to the object's motion. v
- For a falling object, when the upward force of air resistance balances the downward gravitational force, the net force on the object is zero. The object continues to move downward with a constant maximum speed, called the terminal speed.

Chapter 4

Fundamental Forces v

- There are four fundamental forces:
- Electromagnetic force
- Gravitational force
- Strong nuclear force
- Weak nuclear force ,
- The four fundamental forces are all field forces.

