Chapter 3

Section 3 Projectile Motion

Preview

- Objectives
- Projectiles
- Kinematic Equations for Projectiles
- Sample Problem

Chapter 3

Section 3 Projectile Motion

Objectives .

- Recognize examples of projectile motion. v
- Describe the path of a projectile as a parabola. v
- Resolve vectors into their components and apply the kinematic equations to solve problems involving projectile motion.

Chapter 3

Section 3 Projectile Motion

Projectiles v

- Objects that are thrown or launched into the air and are subject to gravity are called projectiles.
- Projectile motion is the curved path that an object follows when thrown, launched, or otherwise projected near the surface of Earth. \downarrow
- If air resistance is disregarded, projectiles follow parabolic trajectories.

Chapter 3

Section 3 Projectile Motion

Projectiles, continued

- Projectile motion is free fall with an initial horizontal velocity.
- The yellow ball is given an initial horizontal velocity and the red ball is dropped. Both balls fall at the same rate.
- In this book, the horizontal velocity of a projectile will be considered constant. \checkmark
- This would not be the case if we accounted for air resistance.

Chapter 3

Section 3 Projectile Motion

Projectile Motion

Click below to watch the Visual Concept.

Visual Concept

Chapter 3

Section 3 Projectile Motion

Kinematic Equations for Projectiles ,

- How can you know the displacement, velocity, and acceleration of a projectile at any point in time during its flight? ,
- One method is to resolve vectors into components, then apply the simpler one-dimensional forms of the equations for each component. .
- Finally, you can recombine the components to determine the resultant.

Chapter 3

Section 3 Projectile Motion

Kinematic Equations for Projectiles, continued

- To solve projectile problems, apply the kinematic equations in the horizontal and vertical directions. -
- In the vertical direction, the acceleration a_{y} will equal $-g\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$ because the only vertical component of acceleration is free-fall acceleration. .
- In the horizontal direction, the acceleration is zero, so the velocity is constant.

Chapter 3

Section 3 Projectile Motion

Kinematic Equations for Projectiles, continued

- Projectiles Launched Horizontally
- The initial vertical velocity is 0 .
- The initial horizontal velocity is the initial velocity. v
- Projectiles Launched At An Angle
- Resolve the initial velocity into x and y components.
- The initial vertical velocity is the y component.
- The initial horizontal velocity is the
 x component.

Chapter 3

Section 3 Projectile Motion

Sample Problem

Projectiles Launched At An Angle ,

A zookeeper finds an escaped monkey hanging from a light pole. Aiming her tranquilizer gun at the monkey, she kneels 10.0 m from the light pole, which is 5.00 m high. The tip of her gun is 1.00 m above the ground. At the same moment that the monkey drops a banana, the zookeeper shoots. If the dart travels at $50.0 \mathrm{~m} / \mathrm{s}$, will the dart hit the monkey, the banana, or neither one?

Chapter 3

Section 3 Projectile Motion

Sample Problem, continued ,

1. Select a coordinate system. -

The positive y-axis points up, and the positive x axis points along the ground toward the pole. Because the dart leaves the gun at a height of 1.00 m , the vertical distance is 4.00 m .

Chapter 3

Section 3 Projectile Motion

Sample Problem, continued

2. Use the inverse tangent function to find the angle that the initial velocity makes with the x axis. -

$$
\theta=\tan ^{-1}\left(\frac{\Delta y}{\Delta x}\right)=\tan ^{-1}\left(\frac{4.00 \mathrm{~m}}{10.0 \mathrm{~m}}\right)=21.8^{\circ}
$$

Chapter 3

Section 3 Projectile Motion

Sample Problem, continued ,

3. Choose a kinematic equation to solve for time. Rearrange the equation for motion along the x axis to isolate the unknown Δt, which is the time the dart takes to travel the horizontal distance. v

$$
\begin{aligned}
& \Delta x=\left(v_{i} \cos \theta\right) \Delta t \\
& \Delta t=\frac{\Delta x}{v_{i} \cos \theta}=\frac{10.0 \mathrm{~m}}{(50.0 \mathrm{~m} / \mathrm{s})\left(\cos 21.8^{\circ}\right)}=0.215 \mathrm{~s}
\end{aligned}
$$

Chapter 3

Section 3 Projectile Motion

Sample Problem, continued ,

4 . Find out how far each object will fall during this time. Use the free-fall kinematic equation in both cases. .

For the banana, $v_{i}=0$. Thus:

$$
\Delta y_{b}=1 / 2 a_{y}(\Delta t)^{2}=1 / 2\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.215 \mathrm{~s})^{2}=-0.227 \mathrm{~m}
$$

The dart has an initial vertical component of velocity equal to v_{i} $\sin \theta$, so:
$\Delta y_{d}=\left(v_{i} \sin \theta\right)(\Delta t)+1 / 2 a_{y}(\Delta t)^{2}$
$\Delta y_{d}=(50.0 \mathrm{~m} / \mathrm{s})\left(\sin 21.8^{\circ}\right)(0.215 \mathrm{~s})+1 / 2\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.215 \mathrm{~s})^{2}$

$$
\Delta y_{d}=3.99 \mathrm{~m}-0.227 \mathrm{~m}=3.76 \mathrm{~m}
$$

Chapter 3

Section 3 Projectile Motion

Sample Problem, continued ,

5. Analyze the results. ,

Find the final height of both the banana and the dart.

$$
\begin{aligned}
& y_{\text {banana }, f}=y_{b, i}+\Delta y_{b}=5.00 \mathrm{~m}+(-0.227 \mathrm{~m}) \\
& y_{\text {banana }, f}=4.77 \mathrm{~m} \text { above the ground } \\
& y_{\text {dart }, f}=y_{\text {d, } i}+\Delta y_{d}=1.00 \mathrm{~m}+3.76 \mathrm{~m} \\
& y_{\text {dant }, f}=4.76 \mathrm{~m} \text { above the ground }
\end{aligned}
$$

The dart hits the banana. The slight difference is due to rounding.

