Section 2 Quantum T	heory and the Atom Details
	Skim Section 2 of your text. Write three questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable answers.
	2
N	3
(New- Vocabulary	Use your text to define each term.
ground state	the lowest allowable energy state of an atom
quantum number	number assigned to each orbit of an electron
de Broglie equation	equation that predicts that all moving particles have wave
	characteristics
Heisenberg uncertainty principle	states that both the velocity and position of a particle cannot be
	known at the same time
quantum mechanical model of the atom	the atomic model in which electrons are treated as waves
atomic orbital	a three-dimensional region around the nucleus
principal quantum number	number indicating the relative sizes and energies of atomic orbitals
principal energy level	major energy levels of an atom
energy sublevel	an energy level contained within a principal energy level

Chemistry: Matter and Change

Section 2 Quantum Theory and the Atom (continued)

Main Idea) ——	(Details)			
Bohr's Model of the Atom Use with pages 146–148.	 Classify the characteristics of each series in hydrogen's line spectrum. Include the following information. 1. Beginning orbit(s)/ending orbit 2. Description of the spectral lines 			
	Balmer	Paschen	Lyman	
	1. electrons drop from the third, fourth, fifth, and sixth orbits to the second orbit	1. electrons drop from the fourth, fifth, sixth, and seventh orbits to the third orbit	1. electrons drop from all higher orbits to the first orbit	
	2. four distinct colors	2. infrared	2. ultraviolet	
Mechanical Model of the Atom Use with page 149–150.	the flow chart below. Whole <u>numbers</u> of <u>wavelengths</u> are allowed in a circular orbit of fixed <u>radius</u> .	Light has be wave and particle characteristi	- - \	
	If an electron has <u>wave</u> is restricted to circular o		Can particles of matter, including electrons, behave like <u>waves</u> ?	
	radius, the <u>electron</u> certain possible waveler <u>frequencies</u> , and <u>en</u>	•		

Section 2 Quantum Theory and the Atom (continued)

⊖Main Idea⊃	(Details)
The Heisenberg Uncertainty Principle Use with pages 151–152.	Discuss how Heisenberg's principle influenced Schrödinger to develop his wave equation.
	Heisenberg's uncertainty principle states that it is impossible to
	know both the velocity and position of a particle at the same time.
	This insight allowed Schrödinger to develop an equation for finding
	the probable location of an electron rather than a specific location.
	The probable location of the electrons is called the atomic orbital.
Hydrogen's Atomic Orbitals	Identify four facts about atomic orbitals by completing the following statements.
Use with page 153.	1. Principal quantum numbers indicate the relative sizes and energies of atomic orbitals.
	 2. The atom's major energy levels are called
	3. Principal energy levels contain <u>sublevels</u> .
	 4. The number of <u>energy sublevels</u> in a principal energy level <u>increases</u> as <i>n</i> increases.

SUMMARIZE

Compare and contrast the Bohr and quantum mechanical models of the atom.

Both consider ground state of the atom to be when the electron is in the n = 1 orbit. Bohr

believed that atoms moved around the nucleus in certain allowed circular orbits, whereas the

quantum model suggests a three-dimensional region around the nucleus called an atomic

orbital. The quantum theory further accounts for the chemical behavior of atoms and applies

to hydrogen as well as other elements. Bohr's theory only explained the spectrum of

hydrogen.