Chapter 2

Section 2 Acceleration

Motion with Constant Acceleration ,

- When velocity changes by the same amount during each time interval, acceleration is constant. v
- The relationships between displacement, time, velocity, and constant acceleration are expressed by the equations shown on the next slide. These equations apply to any object moving with constant acceleration.
- These equations use the following symbols:

$$
\begin{aligned}
& \Delta x=\text { displacement } \\
& v_{i}=\text { initial velocity } \\
& v_{f}=\text { final velocity } \\
& \Delta t=\text { time interval }
\end{aligned}
$$

Chapter 2

Section 2 Acceleration

Equations for Constantly Accelerated Straight-Line Motion

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) \Delta t$	$\Delta x=\frac{1}{2} v_{f} \Delta t$
$v_{f}=v_{i}+a \Delta t$	$v_{f}=a \Delta t$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2}$	$\Delta x=\frac{1}{2} a(\Delta t)^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	$v_{f}^{2}=2 a \Delta x$

Chapter 2

Section 2 Acceleration

Sample Problem ,

Final Velocity After Any Displacement

A person pushing a stroller starts from rest, uniformly accelerating at a rate of $0.500 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity of the stroller after it has traveled 4.75 m ?

Chapter 2

Section 2 Acceleration

Sample Problem, continued

1. Define ,

Given:

$$
\begin{aligned}
& v_{i}=0 \mathrm{~m} / \mathrm{s} \\
& a=0.500 \mathrm{~m} / \mathrm{s}^{2} \\
& \Delta x=4.75 \mathrm{~m}
\end{aligned}
$$

Unknown:

$$
v_{f}=?
$$

Diagram: Choose a coordinate system. The most convenient one has an origin at the initial location of the stroller, as shown above. The positive direction is to the right.

Chapter 2

Section 2 Acceleration

Sample Problem, continued ,

2. Plan

Choose an equation or situation: Because the initial velocity, acceleration, and displacement are known, the final velocity can be found using the following equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

Rearrange the equation to isolate the unknown: Take the square root of both sides to isolate v_{f}.

$$
v_{f}= \pm \sqrt{v_{i}^{2}+2 a \Delta x}
$$

Chapter 2

Section 2 Acceleration

Sample Problem, continued

3. Calculate

Substitute the values into the equation and solve: v

$$
v_{f}= \pm \sqrt{(0 \mathrm{~m} / \mathrm{s})^{2}+2\left(0.500 \mathrm{~m} / \mathrm{s}^{2}\right)(4.75 \mathrm{~m})}
$$

Tip: Think about the physical situation to

$$
v_{f}=+2.18 \mathrm{~m} / \mathrm{s}
$$

4. Evaluate

The stroller's velocity
after accelerating for 4.75 m is $2.18 \mathrm{~m} / \mathrm{s}$ to the right.

