Motion with Constant Acceleration

- When velocity changes by the same amount during each time interval, acceleration is constant.
- The relationships between displacement, time, velocity, and constant acceleration are expressed by the equations shown on the next slide. These equations apply to any object moving with constant acceleration.

< Back

Next >

Preview n

Main n

- These equations use the following symbols:
 - Δx = displacement v_i = initial velocity v_f = final velocity Δt = time interval

© Houghton Mifflin Harcourt Publishing Company

Equations for Constantly Accelerated Straight-Line Motion

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x = \frac{1}{2}(\nu_i + \nu_f)\Delta t$	$\Delta x = \frac{1}{2}\nu_f \Delta t$
$\nu_f = \nu_i + a\Delta t$	$v_f = a \Delta t$
$\Delta x = \nu_i \Delta t + \frac{1}{2}a(\Delta t)^2$	$\Delta x = \frac{1}{2}a(\Delta t)^2$
$v_f^2 = v_i^2 + 2a\Delta x$	$v_f^2 = 2a\Delta x$

< Back

Next >

Preview n

Main 💼

© Houghton Mifflin Harcourt Publishing Company

Sample Problem -

Final Velocity After Any Displacement

A person pushing a stroller starts from rest, uniformly accelerating at a rate of 0.500 m/s². What is the velocity of the stroller after it has traveled 4.75 m?

< Back

Next >

Preview n

Main 🏚

Section 2 Acceleration

< Back

Next >

Of lid

Main n

Preview n

Sample Problem, continued -1. Define Given: $v_i = 0 \text{ m/s}$ $a = 0.500 \text{ m/s}^2$ + x $\Delta x = 4.75 \text{ m}$ **Unknown:** $V_f = ?$ Diagram: Choose a coordinate system. The most convenient one has an origin at the initial location of the stroller, as shown above. The positive direction is to the right.

Sample Problem, continued

2. Plan

Choose an equation or situation: Because the initial velocity, acceleration, and displacement are known, the final velocity can be found using the following equation:

$$v_f^2 = v_i^2 + 2a\Delta x$$

Rearrange the equation to isolate the unknown: Take the square root of both sides to isolate v_f .

$$v_f = \pm \sqrt{v_i^2 + 2a\Delta x}$$

< Back

Next >

Preview n

Main n

© Houghton Mifflin Harcourt Publishing Company

Sample Problem, continued

3. Calculate

Substitute the values into the equation and solve: \downarrow

 $v_f = \pm \sqrt{(0 \text{ m/s})^2 + 2(0.500 \text{ m/s}^2)(4.75 \text{ m})}$

4. Evaluate

The stroller's velocity

Tip: Think about the physical situation to determine whether to keep the positive or negative answer from the square root. In this case, the stroller starts from rest and ends with a speed of 2.18 m/s. An object that is speeding up and has a positive acceleration must have a positive velocity. So, the final velocity must be positive.

Next >

< Back

after accelerating for 4.75 m is 2.18 m/s to the right.

End Of Slide

Main 🛍

Preview n