Chapter 2

Section 1 Displacement and

 Velocity
Preview

- Objectives
- One Dimensional Motion
- Displacement
- Average Velocity
- Velocity and Speed
- Interpreting Velocity Graphically

Chapter 2

Section 1 Displacement and

 Velocity
Objectives v

- Describe motion in terms of frame of reference, displacement, time, and velocity. v
- Calculate the displacement of an object traveling at a known velocity for a specific time interval. v
- Construct and interpret graphs of position versus time.

Chapter 2

Section 1 Displacement and

 Velocity
One Dimensional Motion v

- To simplify the concept of motion, we will first consider motion that takes place in one direction. v
- One example is the motion of a commuter train on a straight track.
- To measure motion, you must choose a frame of reference. A frame of reference is a system for specifying the precise location of objects in space and time.

Chapter 2

Section 1 Displacement and Velocity

Frame of Reference

Click below to watch the Visual Concept.

Visual Concept

Chapter 2

Section 1 Displacement and Velocity

Displacement .

- Displacement is a change in position.
- Displacement is not always equal to the distance traveled.
- The SI unit of displacement is the meter, m . v

$$
\Delta x=x_{f}-x_{i}
$$

displacement $=$ final position - initial position

Chapter 2

Section 1 Displacement and

 Velocity
Displacement

Click below to watch the Visual Concept.

Visual Concept

Chapter 2
 Section 1 Displacement and Velocity

Positive and Negative Displacements

Chapter 2

Section 1 Displacement and

 Velocity
Average Velocity

- Average velocity is the total displacement divided by the time interval during which the displacement occurred. v

$$
\begin{gathered}
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
\text { average velocity }=\frac{\text { change in position }}{\text { change in time }}=\frac{\text { displacement }}{\text { time interval }}
\end{gathered}
$$

- In SI, the unit of velocity is meters per second, abbreviated as m / s.

Chapter 2

Section 1 Displacement and Velocity

Average Velocity

Click below to watch the Visual Concept.

Visual Concept

Chapter 2

Section 1 Displacement and Velocity

Velocity and Speed .

- Velocity describes motion with both a direction and a numerical value (a magnitude). .
- Speed has no direction, only magnitude.
- Average speed is equal to the total distance traveled divided by the time interval.

$$
\text { average speed }=\frac{\text { distance traveled }}{\text { time of travel }}
$$

Chapter 2

Section 1 Displacement and

 Velocity
Interpreting Velocity Graphically

- For any position-time graph, we can determine the average velocity by drawing a straight line between any two points on the graph. v
- If the velocity is constant, the graph of position versus time is a straight line. The slope indicates the velocity.
- Object 1: positive slope = positive velocity
- Object 2: zero slope= zero velocity
- Object 3: negative slope = negative velocity

Chapter 2

Section 1 Displacement and

 Velocity
Interpreting Velocity Graphically, continued v

The instantaneous velocity is the velocity of an object at some instant or at a specific point in the object's path.

The instantaneous velocity at a given time can be determined by measuring the slope of the line that is tangent to that point on the position-versus-time graph.

Chapter 2

Section 1 Displacement and

 Velocity
Sign Conventions for Velocity

Click below to watch the Visual Concept.

Visual Concept

